Генератор синусоидального сигнала на мосту Вина

В радиолюбительской практике часто возникает необходимости использовать генератор синусоидальных колебаний. Применения ему можно найти самые разнообразные. Рассмотрим вариант создания генератор синусоидального сигнала на мосту Вина со стабильной амплитуды и частотой.

В статье описывается разработка схемы аппаратного генератора синусоидального сигнала. Если вас интересует программная генерация синусоиды, то читайте статью:

 Программа Audacity как простой генератор звука и шума

Наиболее удобным, с точки зрения сборки и наладки, вариантом генератора синусоидального сигнала является генератор, построенный на мосту Вина, на современном Операционном Усилителе (ОУ).

Мост Вина

Сам по себе мост Вина является полосовым фильтром, состоящим из двух RC фильтров. Т.е. он выделяет центральную частоту и подавляет остальные частоты.

Мост придумал, Макс Вин еще в 1891 году. На принципиальной схеме, сам мост Вина обычно изображается следующим образом:

Простой и качественный генератор синусоидального сигнала на мосту Вина

Картинка позаимствована у Википедии

Как рассчитать частоту

На таком мосту часто строят автогенераторы и измерители индуктивности. Для удобства используют R1=R2=R и C1=C2=C. При этом основная частота моста рассчитывается из соотношения

f=1/2πRC

Практически любой фильтр можно рассматривать как частотозависимый делитель напряжения. Поэтому при выборе номиналов резистора и конденсатора желательно, чтобы на резонансной частоте комплексное сопротивление конденсатора (Z), было равно, или хотя бы одного порядка с сопротивлением резистора.

Zc=1/ωC=1/2πνC

где ω (омега) — циклическая частота, ν(ню) — линейная частота, ω=2πν

Мост Вина обладает отношением выходного напряжения ко входному b=1/3 . Это важный момент, т.к. этот коэффициент определяет условия стабильной генерации.

Мост Вина и операционный усилитель

Сам по себе мост Вина не является генератором сигнала. Для возникновения генерации его следует разместить в цепи положительной обратной связи операционного усилителя. Такой автогенератор можно построить и на транзисторе, но использование ОУ явно упростит жизнь и даст лучшие характеристики.

Элементы моста Вина следует включить в цепь положительной обратной связи операционного усилителя. Выглядит это следующим образом:

Простой и качественный генератор синусоидального сигнала на мосту Вина

Элементы положительной обратной связи ОУ определяют частоту генерации. А элементы отрицательной обратной связи — усиление.

Коэффициент усиления на троечку

Выше было сказано, что мост Вина имеет коэффициент пропускания b=1/3. Поэтому условием генерации является то, что ОУ должен обеспечивать коэффициент усиления равный трем.

В таком случает произведение коэффициентов пропускания моста Вина и усиления ОУ даст 1. И будет происходить стабильная генерация заданной частоты.

В идеале, задав резисторами, в цепи отрицательной обратной связи, нужный коэфф усиления, мы должны получить готовый генератор. Это неинвертирующий усилитель и его коэффициент усиления определяется соотношением:

K=1+R2/R1

Простой и качественный генератор синусоидального сигнала на мосту Вина

Но увы, мир не идеален…. На практике оказывается, что для запуска генерации необходимо, чтобы в самый начальный момент коэфф. усиления был немного больше 3-х, а далее для стабильной генерации он поддерживался равным 3.

Если коэффициент усиления будет меньше 3-х то генератор заглохнет, если больше — то сигнал достигнув напряжения питания начнет искажаться, и наступит насыщение.

При насыщении, на выходе будет поддерживаться напряжение, близкое к одному из напряжений питания. И будут происходить случайные хаотичные переключения между напряжениями питания.

Простой и качественный генератор синусоидального сигнала на мосту Вина

Поэтому, строя генератор на мосте Вина, прибегают к использованию нелинейного элемента в цепи отрицательной обратной связи, регулирующего коэффициент усиления. Т.е. генератор будет сам себя уравновешивать и поддерживать генерацию на одинаковом уровне.

Стабилизация амплитуды на лампе накаливания

В самом классическом варианте генератора на мосте Вина на ОУ, применяется миниатюрная низковольтная лампа накаливания, которая устанавливается вместо резистора.

Простой и качественный генератор синусоидального сигнала на мосту Вина

При включении такого генератора, в первый момент, спираль лампы холодная и ее сопротивление мало. Это способствует запуску генератора (K>3). Затем, по мере нагрева, сопротивление спирали увеличивается, а коэффициент усиления снижается, пока не дойдет до равновесия (K=3).

Цепь положительной обратной связи, в которую был помещен мост Вина, остается без изменений. Общая принципиальная схема генератора выглядит следующим образом:

Простой и качественный генератор синусоидального сигнала на мосту Вина

Идея использования лампочки, в качестве управляющего элемента очень интересна и используется по сей день. Но у лампочки, увы, есть ряд недостатков:

  • требуется подбор лампочки и токоограничивающего резистора R*.
  • при регулярном использовании генератора, срок жизни лампочки обычно ограничивается несколькими месяцами
  • управляющие свойства лампочки зависят от температуры в комнате.

Другим интересным вариантом является применение терморезистора с прямым подогревом. По сути, идея та же, только вместо спирали лампочки используется терморезистор. Проблема в том, что его нужно для начала найти и опять таки подобрать и его и токоограничиващие резисторы.

Стабилизация амплитуды на светодиодах

Эффективным методом стабилизации амплитуды выходного напряжения генератора синусоидальных сигналов является применение в цепи отрицательной обратной связи ОУ светодиодов (VD1 и VD2).

Простой и качественный генератор синусоидального сигнала на мосту Вина

Основной коэффициент усиления задается резисторами R3 и R4. Остальные же элементы (R5, R6 и светодиоды) регулируют коэффициент усиления в небольшом диапазоне, поддерживая генерацию стабильной. Резистором R5 можно регулировать величину выходного напряжения в интервале примерное 5-10 вольт.

В дополнительной цепи ОС желательно использовать низкоомные резисторы (R5 и R6). Это позволит пропускать значительный ток (до 5мА) через светодиоды и они будут находиться в оптимальном режиме. Даже будут немного светиться :-)

На показанной выше схеме, элементы моста Вина рассчитаны для генерации на частоте 400 Гц, однако они могут быть легко пересчитаны для любой другой частоты по формулам, представленным в начале статьи.

Качество применяемых элементов

Важно, чтобы операционный усилитель мог обеспечить необходимый для генерации ток и обладал достаточной полосой пропускания по частоте. Использование в качестве ОУ народных TL062 и TL072 дало очень печальные результаты на частоте генерации 100кГц. Форму сигнала было трудно назвать синусоидальной, скорее это был треугольный сигнал. Использование TDA 2320 дало еще более худший результат.

А вот NE5532 показа себя с отличной стороны, выдав на выходе сигнал очень похожий на синусоидальный. LM833 так же справилась с задачей на отлично. Так что именно NE5532 и LM833 рекомендуются к использованию как доступные и распространенные качественные ОУ. Хотя с понижением частоты гораздо лучше себя будут чувствовать и остальные ОУ.

Точность частоты генерации напрямую зависит от точности элементов частотозависимой цепи. И в данном случае важно не только соответствие номинала элемента надписи на нем. Более точные детали имеют лучшую стабильность величин при изменении температуры.

В авторском варианте были применены резистор типа С2-13 ±0.5% и слюдяные конденсаторы точностью ±2%. Применение резисторов указанного этого типа обусловлено их малой зависимостью сопротивления от температуры. Слюдяные конденсаторы так же мало зависят от температуры и имеют низкий ТКЕ.

Минусы светодиодов

На светодиодах стоит остановиться отдельно. Их использование в схеме синус генератора вызвано величиной падения напряжения, которое обычно лежит в интервале 1.2-1.5 вольта. Это позволяет получать достаточно высокое значение выходного напряжения.

Простой и качественный генератор синусоидального сигнала на мосту Вина

После реализации схемы, на макетной плате, выяснилось, что из-за разброса параметров светодиодов, фронты синусоиды на выходе генератора не симметричны. Это заметно даже на приведенной выше фотографии. Помимо этого присутствовали небольшие искажения формы генерируемого синуса, вызванные недостаточной скоростью работы светодиодов для частоты генерации 100 кГц.

Диоды 4148 вместо светодиодов

Светодиоды были заменены на всеми любимые диоды 4148. Это доступные быстродействующие сигнальные диоды со скоростью переключения менее 4 нс. Схема при этом осталась полноценно работоспособной, от описанных выше проблем не осталось и следа, а синусоида приобрела идеальный вид.

На следующей схеме элементы моста вина рассчитаны на частоту генерации в 100 кГц. Так же переменный резистор R5 был заменен на постоянные, но об этом позже.

Простой и качественный генератор синусоидального сигнала на мосту Вина

В отличие от светодиодов, падение напряжения на p-n переходе обычных диодов составляет 0.6÷0.7 В, поэтому величина выходного напряжения генератора составила около 2.5 В. Для увеличения выходного напряжения возможно включение нескольких диодов последовательно, вместо одного, например вот так:

Простой качественный генератор синуса на мосту Вина генератор синусоида

Однако увеличение количества нелинейных элементов сделает генератор более зависимым от внешней температуры. По этой причине было решено отказаться от такого подхода и использовать по одному диоду. 

Замена переменного резистора постоянными

Теперь о подстроечном резисторе. Изначально в качестве резистора R5 был применен многооборотный подстроечный резистор на 470 Ом. Он позволял точно регулировать величину выходного напряжения.

Использование переменного резистора в подобных цепях нежелательно по двум основным причинам:

  • ненадежность подвижного контакта
  • наличие у многооборотных подстроечных резисторов паразитной индуктивности, которая может отрицательно сказаться на качестве выходного сигнала

При построении любого генератора крайне желательно наличие осциллографа. Переменный резистор R5 напрямую влияет на генерацию — как на амлитуду так и на стабильность.

Для представленной схемы генерация стабильна лишь в небольшом интервале сопротивлений этого резистора. Если соотношение сопротивлений больше требуемого — начинается клиппинг, т.е. синусоида будет подрезаться сверху и снизу. Если меньше — форма синусоиды начинает искажаться, а при дальнейшем уменьшении генерация глохнет. 

Так же это зависит от используемого напряжения питания. Описываемая схема исходно была собрана на ОУ LM833 с питанием ±9В. Затем, без изменения схемы, ОУ были заменены на AD8616, а напряжение питания на ±2,5В (это максимум для этих ОУ). В итоге такой замены синусоида на выходе подрезалась. Подбор резисторов дал значения 210 и 165 ом, вместо 150 и 330 соответственно.

Как подобрать резисторы

В принципе можно оставить и подстроечный резистор. Все зависит от требуемой точности и генерируемой частоты синусоидального сигнала.

Для самостоятельного подбора следует, в первую очередь, установить подстроечный резистор номиналом 200-500 Ом. Подав выходной сигнал генератора на осциллограф и вращая подстроечный резистор дойти до момента когда начнется ограничение.

Затем понижая амплитуду найти положение, в котором форма синусоиды будет наилучшей.Теперь можно выпаять подстроечник, замерить получившиеся величины сопротивлений и впаять максимально близкие значения.  

Если вам требуется генератор синусоидального сигнала звуковой частоты, то можно обойтись и без осциллографа. Для этого, опять таки, лучше дойти до момента когда сигнал, на слух, начнет искажаться из-за подрезания, а затем убавить амплитуду. Убавлять следует до тех пор пока искажения не пропадут, а затем еще немного. Это необходимо т.к. на слух не всегда можно уловить искажения и в 10%.   

Дополнительное усиление

Т.к. Синус генератор был собран на сдвоенном ОУ, то половина микросхемы осталась висеть в воздухе. Она была задействована под регулируемый усилитель напряжения. Это позволило перенести переменный резистор из дополнительной цепи ОС генератора в каскад усилителя напряжения для регулировки выходного напряжения.

Также применение дополнительного усилительного каскада гарантирует лучшее согласование выхода генератора с нагрузкой, т.к он был построен по классической схеме неинвертирующего усилителя.

генератор синусоидального сигнала

Коэффициент усиления каскада задается соотношением:

K=1+R2/R1

Резистор R1 представляет из себя сумму последовательно включенных переменного и постоянного резисторов. Это необходимо, чтобы при минимальном положении ручки переменного резистора коэффициент усиления не ушел в бесконечность, вызвав ограничение выходного сигнала на уровне напряжения питания ОУ.

Указанные номиналы позволяют изменять коэффициент усиления от 2 до 5. При необходимости номиналы можно пересчитать под требуемую задачу. Стоит придерживаться номиналов от 1 до 100 кОм.

Как умощнить выход

Генератор предполагался для работы на низкоомную нагрузку в несколько Ом. Разумеется ни один маломощный ОУ не сможет выдать необходимый ток.

По этой причине было решено умощнить выход генератора повторителем на микросхеме TDA2030. Все вкусности такого применения этой микросхемы описаны в статье Схема повторителя напряжение на ОУ. Мощный повторитель напряжения на TDA2030

А вот так собственно выглядит схема всего синусоидального генератора с усилителем напряжения и повторителем на выходе:

Простой и качественный генератор синусоидального сигнала на мосту Вина

Генератор на мосту Вина может быть построен и на самой TDA2030 в качестве ОУ. Все зависит от требуемой точности и выбранной частоты генерации.

Если нет особых требований к качеству генерации и требуемая частота не превышает 80-100 кГц, но при этом предполагается работа на низкоомную нагрузку, то этот вариант вам идеально подойдет.

Заключение

Генератор на мосту Вина — не единственный способ генерации синусоиды. Если вы нуждаетесь в высокоточной стабилизации частоты то лучше смотреть в сторону генераторов с кварцевым резонатором.

Однако, описанная схема, подойдет для подавляющего большинства случаев, когда требуется получение стабильного, как по частоте так и по амплитуде, синусоидального сигнала. 

Генерация это хорошо, а как точно измерить величину переменного напряжения высокой частоты? Для это отлично подходит схема которая называется Активный выпрямитель.

Если же требуется измерять величину переменного напряжения на каком-то определенном элементе или участке цепи, то для таких целей идеально подойдет дифференциальный усилитель или его более продвинутый вариант — инструментальный усилитель.

Материал подготовлен исключительно для сайта AudioGeek.ru

The following two tabs change content below.
Привет! В этом окошке авторы блогов любят мериться крутостью биографий. Мне же будет гораздо приятнее услышать критику статей и блога в комментариях. Обычный человек, который любит музыку, копание в железе, электронике и софте, особенно когда эти вещи пересекаются и составляют целое, отсюда и название - АудиоГик. Материалы этого сайта - личный опыт, который, надеюсь, пригодится и Вам. Приятно, что прочитали :-) 

Комментарии 12

  • Все очень подробно и доходчиво! Побольше бы таких статей))

  • 4148 — не диоды Шоттки, хотя падение напряжения на них может быть 0,5В при токе 100мкА.

    • И правда. А я почему-то всегда считал что они Шоттки.
      Большое спасибо, что не прошли мимо и отписались!
      Статью исправил :-)

  • Здравствуйте! Спасибо за интересную статью! Хочу собрать генератор синусоиды (или, хотя бы, прямоугольного сигнала) с усилением сигнала для потребителя в виде электровентилятора 400 Гц 125 В (20 Вт). Но хотелось бы из уже имеющихся деталей. Присутствует микросхема 555, IRF Z44N и 7815. Что можете подсказать на этот счёт? Заранее спасибо!

    • Здравствуйте, Виктор!
      На 555 таймере очень легко можно собрать генератор, в интернете на этот счет есть куча схем и примеров. IRFZ44N хорошо подойдет в качестве выходного усилителя для вашего генератора. Ваш стабилизатор на 15 вольт вполне подойдет для питания таймера. Говорят что 555-ый очень чувствителен к питанию, поэтому для нормальной стабилизации желательно чтобы БП давал выше 17-18 вольт, хотя для вентилятора это не страшно. Вообщем, из представленных деталей вполне можно собрать требуемый генератор.

  • Можете-ли вы лицензировать вашу схему под GPLv3 или BSD-like лицензией?

    Мне нужен подобный генератор для наладки более сложного генератора, хочу сделать проект и разводку платы в KiCAD. Разводка будет под GPLv3, если-бы и схема была под такой-же лицензией, было-бы прекрасно.

  • Есть вопросы для генератора с Диодами 4148:
    какие номиналы деталей должны быть для перекрытия диапазона 10…100000 Гц ? Изменятся ли качественные характеристики самого генератора?

    • Здравствуйте!
      Для перекрытия такого диапазона можно попробовать установить в качестве С1 и С2 емкость в 0.15 мкФ, а в качестве резисторов R1 и R2 — сдвоенный переменный резистор в 100кОм. Тогда на 100 килоомах будет частота в 10 Герц, а при сопротивлении переменного резистора в 10 Ом будет 100кГц.
      Но это не очень хороший вариант. Во первых на переменном резисторе в 100 кОм попасть в 10 Ом нереально. А если уйти в ноль то генерация заглохнет. Для этого можно последовательно с переменным включить постоянный резистор. Во вторых нужен хороший перенненник, лучше многооборотный. Иначе рассогласованность резисторов наверняка вызовет проблемы.
      В третьих такой вариант плох потому что это слишком малое сопротивление. Обычно для ОУ номиналы резисторов выбирают из ряда 1к-100к.
      Это наверняка приведет к проблемам с генерацией и искажениям формы синусоиды.

      Для решения вашей задачи лучше установить галетный переключатель, которым можно будет менять емкость.Таким образом можно разделить весь диапазон частот на 3-4 поддиапазона, а в качестве резистора установить переменный резистор последовательно с постоянным и им определять частоту в пределах выбранного поддиапазона.
      Обычно так и поступают в заводских генераторах.

  • Скажите а ОУ питать однополярным питанием?

  • Здравствуйте! Подскажите как подбираются резисторы 5 и 6?

    • Здравствуйте, Владислав!
      Спасибо за Ваш вопрос. Я дополнил статью разделом про подбор резисторов.
      Резистор R6 я не трогал, менял только R5. Но в принципе оба резистора можно заменить одним подстроечным резистором в 2.2 — 2.5 кОм. Но при этом область со стабильной генерацией будет более узкой и ее будет труднее поймать.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.